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Abstract. This invited paper unifies our recent work on the automated
synthesis of strategy templates as robust certified interfaces for inter-
acting autonomous systems. Strategy templates are similar to classical
strategies typically computed by reactive software synthesis but contain
a huge set of relevant strategies in a succinct and simple data structure.
This permissiveness allows efficient adaptations to new specifications as
well as robustness to unexpected actuation failures during runtime. In
addition to these favorable engineering properties of strategy templates
for cyber-physical systems (CPS), their permissiveness, efficient com-
putability, and adaptability enables their use for the automated synthe-
sis of certified interfaces among different interacting CPS. This paper
discusses the foundations and applications of this novel control-inspired
distributed reactive synthesis framework for different cooperation and
partial-observation settings common for interacting CPS.

Keywords: Rational Synthesis -+ Cooperative Synthesis * Strategy
Templates - Negotiation -+ Graph Games - Robustness

1 Introduction

The holy grail of autonomy and artificial intelligence are technological systems
that deploy a reliable seamless and strategic interaction with each other, which
requires the design of robust certified interfaces for their interaction. In recent
years, this problem has been addressed by a combination of formal methods
(rooted in theoretical computer science) and control theory (rooted in engineer-
ing) [5,11-13,15], due to two main observations: first, and more obviously, the
trustworthiness of software is the main object of study within the formal meth-
ods community, naturally leading to an intersection of concerns for embedded
software within cyber-physical systems (CPS). The second, usually non-obvious
reason, is that strategic decisions in higher control layers of autonomous CPS
are largely event-based, naturally leading to discrete, transition-based models,
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such as automata, formal languages or logic. In both cases, so called reactive
(software) systems are particularly related to feedback control. Here, the com-
putations of a software component are influenced by inputs from the outside
which might, in turn, be effected by their outputs, which forms a logical feedback
loop between the (software) system and its (software) environment.

This connection between reactive software and feedback control is well known
and existing work bridges both fields by either (i) enhancing classical feedback
control with formal methods, or (ii) enhancing reactive synthesis with physical
dynamics.However, methods that efficiently integrate both to address the chal-
lenges of seamless strategic feedback among autonomous CPS are still in their
infancy. This invited paper outlines how our recent research addresses this gap
by rethinking distributed reactive synthesis from a control perspective for robust
certified interface design in higher layers of the CPS control software stack.

Distributed Reactive Synthesis is concerned with the automated compu-
tation of implementations of interacting reactive software components, given
specifications for each component in linear temporal logic (LTL). While this
classical synthesis problem is known to be undecidable, we consider a common
variant where the strategic interaction capabilities of the components are known
and modelled as a P-player game graph G. However, in contrast to most previ-
ous work, we assume that players only know their own objective ¢, along with
G and compute their own strategy m, independently under this knowledge. In
addition, during runtime, each player only observes the current moves of other
players, but does not know their strategy, and hence, cannot use this knowledge
to condition its strategy on. Given such an instance, this paper presents our
novel techniques to synthesize robust certified interfaces for fully cooperating [3]
and rationally interacting [10] players, which allows them to adapt their local
strategies efficiently both during (offline) synthesis and during (online) deploy-
ment.

The main ingredient of our framework is the realization of these interfaces
by strategy templates. We first introduced strategy templates as novel robust
and adaptable logical controllers for single systems [2]. Strategy templates are
similar to classical strategies typically computed by reactive synthesis but con-
tain a huge set of relevant strategies in a succinct and simple data structure.
This permissiveness allows efficient adaptations to new specifications as well as
robustness to unexpected actuation failures during runtime. In addition, strat-
egy template synthesis only requires mild modifications of the classical reactive
synthesis algorithms and therefore enjoys identical computational complexities.

In addition to the favorable engineering properties of strategy templates
for CPS control, their permissiveness, efficient computability, and adaptability
enables their use for the synthesis of certified interfaces among different inter-
acting CPS. Here the fundamental idea is to iteratively co-synthesize templates
both as assumptions and as guarantees by individual players which are iteratively
refined into certified interfaces. While assume-guarantee reasoning has proven
useful in verification, where all component implementations are known, assume-
guarantee synthesis usually encounters a chicken-and-egg problem — without
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component implementations, no contracts can be obtained and without con-
tracts, no respecting implementations can be synthesized. Our work fills this
gap by locally computing permissive templates which retain as many feasible
ways of cooperation as possible to allow for a distributed implementation to be
eventually discovered by their iterative and distributed refinement. In particu-
lar, our frameworks does not only address safety — which naturally allows for
maximal permissiveness — but to also enable certified interactive progress, which
is known to be very challenging already for verification.

In Summary, our iterative synthesis frameworks are

e crpressive — we consider parity specifications to model system objectives;

e privacy concerned — specifications and strategy choices of systems are not
directly shared or handled centrally;

e computationally tractable — the efficient computability and adaptability prop-
erties of strategy templates allow for reasonable synthesis times; and

e ensured to terminate — due to careful under-approximations of templates
which prevent game graph modifications in between iterations.

Further, the resulting strategy templates form a robust certified interface for
interacting CPS due to their

o full decentralization of strategy choices — during runtime, the correct interac-
tion of components is achieved by any locally chosen strategy, as long as each
one satisfies the (previously iteratively synthesized) local template;

e their robustness — the full decentralization of strategy choices retains the local
robustness and adaptability of strategy templates during deployment.

In addition, we have recently shown the applicability of strategy templates
beyond distributed reactive synthesis. In particular, we have

e introduced a hierarchical control framework which combines low-level (fast)
physical feedback control with high-level (slow) logical feedback control in a
novel seamless manner [9] powered by the use of strategy templates as vertical
interfaces between both control layers, and

e used strategy templates to build a progress guided refinement framework for
the synthesis of embedded software via infinite-state reactive program games
[14], which can efficiently handle synthesis problem which are non-tractable
by any existing partial solvers for this (undecidable) synthesis problem.

Outline. This invited paper is based on our recent work [1-3,10], to which we
refer for an in-depth discussion of related work, the proposed synthesis algo-
rithms, their correctness proofs and their experimental evaluations along with
many illustrative examples. In contrast, this invited paper illustrates the under-
lying similarities and differences of these algorithms. After recalling preliminaries
in Sect. 2 and the general notion of strategy templates in Sect. 3, the discussion
of the iterative synthesis frameworks in Sect. 4 provides a novel joint view on the
negotiation frameworks for cooperative [3] and rational [10] players. This allows
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us to extend our cooperative framework from 2 to P players, which gives addi-
tional insights about the permissiveness and termination nature of our synthesis
frameworks, not contained in our previous work. In addition, Sect.5 provides a
new, unpublished algorithm for strategy template based control under partial
observation, typically present in autonomous CPS applications.

2 Preliminaries

This section introduces notation and preliminaries used throughout the paper.

Notation. We use N to denote the set of natural numbers including zero.
Given two natural numbers a,b € N with a < b, we use [a;b] to denote the
set {n € N|a <n < b}. The notations X* and X, respectively, denote the set
of finite and infinite words over the finite alphabet Y. Given two words u € X*
and v € X* U X, the concatenation of u and v is written as the word wwv.

2.1 Infinite Games over Finite Graphs

We use games over finite graphs as an abstract model for the interaction dynam-
ics within in a distributed CPS. This section introduces notation and prelimi-
naries on this modeling formalism.

Game Graphs. A P-player (turn-based) game graph is a tuple G = (V, E, vg)
where (V, FE,vg) is a finite, directed graph with vertices V' and edges E, and
vo € V is an initial vertex. For such a game graph, let P = [1; P] be the set
of players such that V' = UpEP V; is partitioned into vertices of P players in P.
We write E,, p € P, to denote the edges from Player p’s vertices, i.e., F, =
E N (V, x V). Further, we write V-, and E-, to denote the set |J,,V, and
Uq +p Eq, respectively. A play from a vertex ug is a finite or infinite sequence of
vertices p = uopuy ... with (uj,uj41) € E for all j > 0.

Winning Conditions. Given a game graph G, a winning condition (or objec-
tive) is a set of plays specified using a formula @ in linear temporal logic (LTL)
over the vertex set V, i.e., LTL formulas whose atomic propositions are sets of
vertices from V. We write £(®) C V¥ to denote the set of plays that satisfy
®. The standard definitions of w-regular languages and LTL are omitted for
brevity and can be found in standard textbooks [4]. In particular, we consider
parity objectives given by the LTL formula

Parity(C):= N\ | D0C" = Vo Do |, (1)

1€0ad[0;d] J€even[i+1;d]

with color set C7 = {v : C(v) = j} for 0 < j < d of vertices for some coloring
function C: V — [0;d] that assigns each vertex a color (a.k.a. priority). Hence,
L(Parity(C)) contains all plays p for which the highest color appearing infinitely
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often is even. We note that every game with an arbitrary w-regular winning
condition can be reduced to a parity game (possibly with a larger vertex set) [4].

Games. A P-player (single-objective) game is a tuple G = (G, @), where G is a
game graph, and @ is the winning condition over G. A P-player multi-objective
game is a pair G = (G, (Pp)pep) where G is a P-player game graph and each
&, is an objective for Player p over G. We call a G a parity game if all involved
winning conditions are parity objectives.

Strategies. A strategy of Player p, p € P, is a function m,: V*V, — V such
that for every pv € V*V,,, it holds that (v, m,(pv)) € E. A strategy profile for
a set of players P’ C P is a tuple (m,)pep Of strategies, one for each player in
P’. To simplify notation, we write P, and 7, to denote the set P\ {p} and
their strategy profile (7,)qep\{p}, respectively. Given a strategy profile (m,)pep,
we say that a play p = uous ... is a (mp)pep -play if for every p € P/ and for all
¢>1, it holds that u,—; € V,, implies ug = mp(ug . . . ug—1).

Winning. Given a game graph G, a play p in G is winning for objective @ if
it satisfies P, i.e., p € L(P). A strategy profile (m,)pepr for P’ C P is winning
for objective @ from a vertex v, denoted by (7,)pepr Foy D, if every (mp)pep-play
from v satisfies . We write (7p)pep F @ if v is the initial vertex. We collect all
vertices from which there exists a strategy profile for players in P’ that satisfies
@ in the winning region! (P'))®.

We note two special cases. First, if P’ = {p}, 7, F, @ requires that Player p
wins from v against all strategies of players in P_,. If |P| = 2, this corresponds
to the classical notion of adversarial winning in zero-sum games. Second, given
a multi-objective game (G, (®,)pep) and the full set of players P’ =P, (mp)pep F
/\peP &, denotes a cooperatively winning strategy profile.

Rational Winning. To formalize a third type of winning that sits between
adversarial and cooperative winning, we use the concept of winning secure equi-
libria (WSE) [7] to introduce rationality among players. A WSE is a Nash equi-
librium where every player’s main goal is to satisfy their own objective ¢,, and,
as a secondary goal, falsify the objectives of the other players. Given a P-player
multi-objective game (G, (Pp)pep), & WSE is a strategy profile (7,),ep for P’ C P
such that (1)(my)per F A cp Pps and (ii)for every strategy m, of Player p € P’
with P = P'\ {p}, it holds that (i), (7, )gep) # A, cpr By = (), (7, gepr) H Bp.
Intuitively, item (i) ensures that the strategy profile satisfies all player’s objec-
tive, whereas item (ii) ensures that no player can improve, i.e., falsify another
player’s objective without falsifying their own objective, by deviating from the
prescribed strategy.

We call a strategy profile (mp)pep rationally winning if it is a WSE over
(G, (Pp)pep) for the full set of players P, i.e. P’ =P.

! Slightly abusing notation, we write {(p)® for singleton sets of players P’ = {p}.
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2.2 Permissive Templates

In principle, a template is simply an LTL formula A over a game graph G.
We will, however, restrict attention to four distinct types of such formulas, and
interpret them as a succinct way to represent a set of strategies for each player,
in particular all strategies that follow A. Formally, a Player p strategy =, follows
A if every mpy-play belongs to £(A), i.e., mp E, A for all v € V. The exposition in
this section follows the presentation in [1] where more illustrative examples and
intuitive explanations can be found.

Safety Templates. Given a set S C E of unsafe edges, the safety template is
defined as Ayxsare(S) := O Aeces —e, where an edge e = (u,v) is equivalent to
the LTL formula u A Qu. A safety template requires that an edge to S should
never be taken.

Live-Group Templates. A live-group H = {e;};>0 is a set of edges e; =
(sj,t;) with source vertices src(H) := {s;};>0. Given a set of live-groups H, =
{H;},~, we define a live-group template as Awg(Hy) = N,;5o D0srce(H;) =
OO H;. A live-group template requires that if some vertex from the source of a
live-group is visited infinitely often, then some edge from this group should be
taken infinitely often by the following strategy.

Conditional Live-Group Templates. A conditional live-group over G is
a pair (R, Hy), where R C V and H, is a set of live groups. Given a set
of conditional live groups H we define a conditional live-group template as
Acoxv(H) = A ,yer (HOR = Auwi(He)). A conditional live-group template
requires that for every pair (R, Hy), if some vertex from the set R is visited
infinitely often, then a following strategy must follow the live-group template
Avwve(Hy). We write (-, Hy) if there exists R C V, such that (R, Hy) is a condi-
tional live group.

Co-liveness Templates. Given a set of co-live edges D, a co-live template is
defined as Acovve(D) := A.cp O0—e. A co-liveness template requires that edges
in D are only taken finitely often.

Composed Templates. A template A := Aynsare(S) A Acorve (D) A Aconn (H)
will be associated with the tuple (S, D, H), denoted by A<1 (S, D, H), in the rest
of the paper. Similarly, A < (S, D, Hy) denotes the template A := Ayygare(S) A
Acouve (D) A Apye(He). We further note that the conjunction of two templates
A<(S,D,H) and A’ < (S’, D', H’) is equivalent to the template (A A A’) < (SU
S’ DU D', HUH) by the definition of conjunction of LTL formulas.

Player Specific Templates. It will be customary to separate templates to
restrict single players. Hence, a template A < (S, D, H) over G is called a
p-template for some p € P if all edges used in the template are Player p’s
edges, i.e., SUDUH C E,, where H := J{H € H, | (,Hy) € H}.
Furthermore, given any template A <1 (S, D, Hy), one can extract a p-template
Alg, by restricting the edges used to E,, i.e., Alg, < (SN E,, DN E, H|g,)
with Hylp, = {HNE,|H c H;}. Similarly, for A < (S,D,H), we define
Alg, 9(SNE,, DN E,, H|g,) with H|g, = {(R, H|g,) | (R, H¢) € H}.
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3 Strategy Templates for Adversarial Winning

This section introduces the concept of strategy templates as a generalization of
strategies in zero-sum games over finite graphs, i.e., in games where it is only
one player’s goal to satisfy the given objective @, while all other players try to
achieve its negation (see Fig.1 (top, right) for an illustration of this scenario).
This setting reduces to a zero-sum two-player game between the protagonist,
who must satisfy @ and the antagonist (i.e., the collection of all other players)
who try to satisfy —®. The content in this section is taken from [2] and included
in this paper for completeness.

Ezample 1 (Illustrative Example). To appreciate the simplicity and easy
adaptability of our strategy templates, consider the game graph in Fig. 1 (left).
The first winning condition ®" = [—e requires vertex e to never be seen along
a play. This can be enforced by Player 0 from vertices Wy = {a, b, ¢, d, f} called
the winning region. The safety template II] = Ayxsare(ece) ensures that the
game always stays in Wy by forcing the edge e.. to never be taken. It is easy
to see that every Player 0 strategy that follows this rule results in plays which
are winning if they start in Wy. Now consider the second winning condition
¢! = 0O0{c, f, g} which requires vertex ¢, f, or g to be seen infinitely often. This
induces the template I1§ = Apve({epe}) AAuve({€as }) With two live groups which
requires that whenever vertex b (resp. vertex a) is seen infinitely often, edge ep.

Strategy Templates 7
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Fig.1. (Left) A 2-player game graph with Player 0 (circle) and Player 1 (square)
vertices. (Right) A graph showing the communication between Player p and Player —p
for different behaviors of Player —p. Self loop denotes the information that is computed
for self and is not shared with others.
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(resp. edge eqp) needs to be taken infinitely often. It is easy to see that any
strategy that complies with this edge-condition is winning for Player 0 from any
vertex and there are infinitely many such compliant winning strategies. Finally,
we consider condition 2 = {O—b requiring vertex b to be seen only finitely
often. This induces the co-liveness template I13 = Acorive(€ch, €cd, €ap) TEquUiring
that all edges from Player 0 vertices which unavoidably might lead to vertex b,
i.e., ech, €cd, €ab, are taken only finitely often.

Winning Strategy Templates. Intuitively, a strategy template is a p-template
I, which is used by Player p to extract a strategy for themself. We say a strategy
template IT, is winning from a vertex v for a game (G, ®) if every Player p
strategy following the template I7,, is winning from v. Moreover, we say a strategy
template IT,, is winning if it is winning from every vertex in {(p)®.

The algorithm to compute a winning strategy template in a parity game
lies in same time complexity class as the standard algorithm, i.e., Zielonka’s
algorithm [16], for solving parity games. This leads to the following result:

Proposition 1 ([2], Thm. 4). Given a parity game with game graph G and
coloring function C: V — [0,d], a winning strategy template can be computed in

@) <|V|d+o(1)) time.

Remark 1. While objectives like safety ((O-V"), Biichi (OO0V”), and co-Biichi
(0OV") are weaker than parity objectives and are subsumed by the latter, the
winning strategy templates for these objectives can be computed in the matching
time of their respective standard algorithms, i.e., O(m),O(nm), and O(nm),
respectively [2, Theorem 1-3|, where n = |V|,m = |E|. Moreover, for safety
objectives we can compute maximally permissive strategy templates (see below).

Permissiveness of Winning Strategy Templates. We call II, maximally
permissive for G, if every Player p strategy m which is winning in G also follows
II,. It is easy to see that safety templates are naturally maximally permissive.
However, while live-group templates capture infinitely many winning strategies
in Biichi games, they may not be maximally permissive (see Ex. 2). As shown in
the example, the strategy templates may fail to capture strategies with memory
that can react to environment strategies and put less restriction on the system
if the environment unexpectedly starts helping the system.

Example 2. Consider the game as in Ex. 1 with objective ®' = 0O0{c, f,g}.
Our algorithm outputs the Player 0 strategy template I} = Apve({epc}) A
Ave({ean}) as in Ex. 1. Now consider the winning strategy mo of Player 0 with
memory that takes edge e, from a, takes e, from ¢, and takes ey for play suffix
db and epq for every other play ending in b. This strategy does not follow the
template—the play (¢bd)“ is in L(my) but not in L£(IIy).

Adaptability through Strategy Templates. Since the strategy templates
provide structured guidelines for the systems to satisfy their tasks, we can now
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combine templates for individual objectives to obtain new templates to satisfy
dynamic objectives. More formally, for instance, given two objectives @ and @',
we can obtain a strategy template by combining her templates 1y and II for
the individual objectives, and one may observe that all strategies compliant
with Iy A II)) are winning for ¢ A &'. This observation allows for more efficient
recomputation of strategies when objectives for the system arrives one after
another—compute the strategy template for the newest parity objective and
conjunct it with the existing strategy template [2, Sec. 5.1, Alg. 4]. Consider
the game as in Ex. 1 with objective ®! = (00{c, f, g}. The strategy template for
Player 0 is 113 as in Ex. 1. Now, if another objective #° = [(—e is added, for which
the strategy template is ITJ = Ayxsapr(€ce ), then the template IT} A IT)—making
ece unsafe—is a winning strategy template for @ A @°.

In addition to their compositionality, strategy templates also allow for local
strategy adaptations in case of edge unavailability faults. Consider again the
game in Ex. 1 with objective #2 = ({O-b, for which the strategy template is
II2 = Acorve(€cbs €cd, €ap)- Suppose that Player 0 follows the strategy m: ¢ — a,
a+ b, b ¢, which is compliant with IT2. If the edge e., becomes unavailable,
we would need to re-solve the game for the modified game graph G' = (V, E' =
E\ {ecq}). However, we see that the strategy 7n’: ¢ — ¢, a — b and b — c is
actually compliant with I1Z over G’. This allows us to obtain a new strategy in
linear time without re-solving the game if edges become temporary unavailable
during deployment.

While these examples demonstrate the potential of templates for strategy
adaptation (both during synthesis and during deployment), there exist scenarios
where conflicts arise from these adaptations, as illustrated next.

Ezample 3. Consider the game in Ex. 1 with objectives @', for which the strategy
template is I13. If Player 0 is now required to satisfy an additional objective
@? = Qb for which the strategy template is I3, then the composition of the
templates I} A I1 marks the edge ey as live and co-live simultaneously. This
causes a conflict at a—if the play arrives infinitely often at a, there is no edge
that can be taken to follow the templates. Hence, to remove the conflicts, we
must ensure that a is not visited infinitely often. So, we re-solve the game with
an additional objective Q[—a.

Conflict-Free Templates and Strategy Extraction. The previous examples
demonstrated that a winning strategy can be efficiently computed from a tem-
plate, if it is conflict-free. Formally, a template A <1 (S, D,’H) over game graph
G = (V,E) is conflict-free if (i) every vertex v has an outgoing edge that is
neither co-live nor unsafe, i.e., EN (v x V) € SUD, and (ii) in every live-group
H € Hy s.t. (-, Hy) € H, every source vertex v has an outgoing edge in H that
is neither co-live nor unsafe, i.e., HN (v x V) € SUD.

Note that checking (i)-(ii) can be done independently for every vertex, and
hence, checking whether a template is conflict-free can be done in linear time.
In addition, whenever the existentially quantified edge in (i) and (ii) exists, a
strategy that alternates between all these edges follows the given template. This
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results in a linear time extraction of a strategy from a conflict-free template as
restated below.

Theorem 1 ([3], Prop. 21). Given a template A over a game graph (V, E, v),
checking whether A is conflict-free can be done in O(|E|) time. Moreover, if A
is conflict-free, a strategy following A can also be extracted in O(|E|) time.

We further showed in [2, Sec.4] that strategy templates directly computed for
a parity objective are always conflict free. Conflicts only arise from the above-
mentioned adaptations due to changes in the specification or the game graph.

Practical Evaluation. Using our prototype tool PeSTel?, we evaluated the
synthesis and adaptability of strategy templates on over 200 examples of parity
games adapted from the SYNTCOMP benchmark suite [8]. Our analysis shows
that the cheap local adaptation of templates usually does not create conflicts,
effectively avoiding the computational overhead of re-computation. In addition,
our experiments show that the observed non-permissiveness of strategy templates
for specifications beyond safety never yielded a reduced winning region compared
to its exact computation for all 200 considered benchmark instances (see [2,
Sec.6] for more details). This suggests that our technique can synthesize and
adapt strategy templates for large problem class efficiently in practice.

4 Contract-Based Distributed Reactive Synthesis

While the previous section has introduced strategy templates for zero-sum
games, we now consider the more common instance where every player, i.e.,
every component, has their own objective, leading us to multi-objective P-player
games. For this setting, we first consider rational players, i.e., players whose
goal is to satisfy their own objective, and only if their objective is not at risk,
are adversarial to others. Thereby, rational players might still ‘accidentally’ help
others while perusing their own objective (see Fig. 1 (middle, right) for an illus-
tration of this scenario), and hence, do not need to be treated fully adversarially.
While rational players allow for a very robust notion of interaction, the assump-
tion of systems always ultimately being adversarial, might not always be realistic.
In particular, if interacting CPS are co-synthesized the design of one component
could take the needs of other components into account if these needs are known,
resulting in a cooperative negotiation framework (see Fig.1 (bottom, right)).
Within this section, we present the outlined synthesis frameworks of fully
cooperating [3] and rationally interacting [10] players jointly. In order to do so,
we first give a unified view of the underlying synthesis principles in Sect. 4.1
and then elaborate on the different algorithms for their realization in Sect. 4.2
and Sect. 4.3, respectively. In particular, this novel joint presentation extents
our work on cooperative strategies from two players (as presented in [3]) to P-
players — becoming en-par with our work on rationally interacting players [10].
In addition, the joint presentation of both frameworks reveals their fundamental
similarities and differences, which have not been presented in this form before.

2 Repository URL: https://github.com/satya2009rta,/pestel.
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4.1 Contracted Specifications

Both negotiation frameworks for multi-objective games rely on the iterative com-
putation of a new set of objectives, one for each player, such that each player can
independently realize these new objectives (e.g., by a local (zero-sum) strategy
template). The main intuition behind the design of this — to be computed — new
specification profile, is that it should (i) ensure that any such local realization
results in a global strategy profile that is winning, w.r.t. the given cooperation
mode (soundness), while (ii) enable each player to realize this specification fully
locally (decentralization), and (iii) not loosing any winning strategy profile on
the way (maximal). This is formalized via contracted specifications next.

Definition 1 (Contracted Specifications). Given a game (G,{®Pp}pcp), a
specification profile {p}pep is said to be a cooperatively contracted specification
CCS (resp. a rationally contracted specification RCS) if it is both

(1) sound: any (mp)pep with m, E ¢, is cooperatively (resp. rationally) winning;
(11) decentralized: it holds that vy € {(p)pp for all p € P.

In addition, CCSs and RCSs are called maximal if L\, cp pp) = LN, cp Pp)-

With this, the decentralized synthesis problem reduces to the computation
of such contracted specifications. In both frameworks, this computation relies
on the ability to iteratively refine an over-approximation of possible strategies a
component might use in a (globally) winning strategy profile. The main insight
that enables this efficiently, is that templates can be used for this purpose. Now,
however, not strategy, but assumption templates ¥p: on players in P’ C P are used
by the other players to over-approximate strategies of players P’. In order to real-
ize the outlined strategy over-approximation and enable an iterative framework
which results in contracted specifications, adequately permissive assumptions are
needed.

Definition 2 (APA; adapted from [1]). Given a P-player game graph G =
(V,E,vg) and a specification @, we say that an assumption template ¥p/ is an
adequately permissive assumption (APA) on players P’ C P for @ if it is

(i) sufficient: there exists a strategy profile (mp),gp such that for every strategy
profile (m,)pep of players in P’ with (m,)pep F Wpr, we have (m,)pep F @5
(i) implementable: (P'YWp = V; and
(iii) permissive: L(Wp) D L(D).

Intuitively, sufficiency ensures that ¥ provides a sufficient restriction on
player P’ strategies under which the others can ensure é. Further, implementabil-
ity ensures that ¥ can be ensured by the players in P’ without any help from
the other players. Finally, permissiveness ensures that the assumption does not
prevent any winning strategy profile from being realized.

Note that computing APAs on players P’ can be reduced to computing APAs
on one player in a 2-player game by considering the players in P’ as one player
and all other players as another player. We can therefore use our algorithm from
[1] to compute APAs for two-player parity games in polynomial time.
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Algorithm 1. CoMPUTERCS(G); adapted from [10, Alg.1]
Input: A P-player multi-objective parity game G = (G = (V, E, vo), (Pp)pep)-
Output: A rationally contracted specification (¢p)pep.-

1: U, «— TrueVp € P

2: return RECURSIVERCS(G, (¥p)per)

3: procedure RECURSIVERCS(G, (¥p)per)

4 Wy N, W VpEP

5: p — Vp N (W-p = D) Vp € P

6: if vo € N, ep(P)¥p then

7 return (pp)per

8 ¥, — ¥, A COMPUTEAPA(G, ¥, A &, p) Vp € P
9 return RECURSIVERCS(G, (¥;)pep)

Lemma 1 ([1, Thm. 4]). Given a P-player game graph G = (V,E vg) and a
parity specification ® = Parity(C), an APA on a set of players P’ C P for & can
be computed, if one exists, in time O(|V[*). We write 3 CoMPUTEAPA(G, &, P’)
to denote the procedure that returns this APA if it exists; and False, otherwise.

It remains to show how contracted specifications are computed via the iter-
ative refinement of APAs for rationally [10] and cooperatively [3] interacting
players, which will be presented in Sect.4.2 and Sect. 4.3, respectively.

4.2 Rationally Contracted Specifications

Intuitively, rationally interacting agents are intrinsically selfish. They are primed
on achieving their own objective. However, through this selfishness they might
— accidentally — help others. Towards computing a contracted specification over
rational agents, we first over-approximate the way in which players (acciden-
tally) help each other by letting each Player p compute an APA &, on themself
by executing the procedure COMPUTEAPA (G, &,, p). Intuitively, &, collects all
restrictions on Player p strategies (i.e., moves they choose themself) s.t. the
resulting play can be winning for @, if others cooperate (somehow). It therefore
over-approzimates the set of all Player p strategies which could possibly form a
rationally winning strategy profile with the other players. As a consequence, the
intersection ¥—, = A ot Va under-approximates the way in which other players
(accidentally) help Player p.

Computation. The main idea of algorithm 1, called CoMPUTERCS(G), is
therefore to iteratively refine the assumptions (¥,),cp on every player — via
RECURSIVERCS — until (¢,)pep with ¢, := ¥, A (¥_, = &,,) (computed in line
5) is a RCS. By Def. 1 this requires that Player p is able to choose a Player p

3 With slight abuse of notation, we also call the algorithm CoMPUTEAPA (G, &,P’) if
@ is an arbitrary w-regular specification. Then the game is converted into a parity
game first (with a possibly exponentially larger state space) by standard methods [4].
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strategy m, s.t. T, F ¢, i.e., m, must (a) satisfy ¥, against all strategies of other
players (which follows from Def. 2 as ¥, is an APA on Player p) and (b) satisfy its
specification @, against all other players strategies which satisfy ¥—, = A atp v,.
Whether (b) holds* is tested by intersecting all winning regions (p)p, (line 6)
to obtain the winning region that is achievable by any strategy profile (mp),cp
with 7, E ¢,. If this check fails, the assumptions (¥,),cp are strengthened by
re-calling RECURSIVERCS (line 8).

As W, = True for each p € P in the first iteration (line 1), we see that the first
time COMPUTEAPA is called in line 8 we have ¥, = COMPUTEAPA(G, ®,,p).
In all further iterations COMPUTEAPA is called with the restricted specifications
@; = W_, AP, for all players (line 8). This tightens the objective for Player p
by incorporating the knowledge on how other players are surely cooperating, as
V., is an under-approzimation of their (accidental) help. As a result, the new
assumptions are stricter than earlier ones, i.e., L(¥,) C L(¥,), and hence, more
informative for the computation of rationally contracted strategies.

Upon termination of COMPUTERCS(G), the resulting specification profile is
indeed a mazimal RCS, as formalized next.

Theorem 2 ([10, Thm. 1]). Given a P-player game G with game graph G =
(V, E,vo) and parity specifications (P,)pep, if the algorithm COMPUTERCS(G)
terminates, then it outputs a maximal RCS (¢p)pep-

Ezxample 4. Consider the game graph in Fig.1 restricted to set of vertices
{c,d, e, f, g}, with specification &, = OL{e, f, g} for Player 0 and 1 = 00{e, g}
for Player 1, and initial vertex c. Then first we observe that neither player can
satisfy their specification by themselves. Then the APA computed by Player 0
is Uo = Acouve(ece), and that computed by Player 1 is W1 = Aunsara(€ar) A
Acouve(€ec). Intuitively, ¥, ensures that the play does not get stuck in vertex ¢,
and progress is made towards Player 0’s goal set. Similarly, ¥; ensures that the
play does not reach a region from which satisfying @y becomes infeasible, and
ensures progress towards vertex g happens. We note that Player 0 accidentally
ends up helping Player 1, by trying to leave c. Hence, in the next iteration,
Player p actually can realize their contract ¢, = ¥, A (¥, = P,,), which gives
us a maximal RCS.

Approximation and Termination. While COMPUTERCS outputs a maximal
RCS when it terminates, it is unfortunately not guaranteed to terminate. This
is due to the fact that the procedure COMPUTEAPA needs a parity game as
an input. While ($,),¢cp are assumed to be parity objectives, this is general not
true for ¥, A @, in later calls to RECURSIVERCS. Therefore, COMPUTEAPA
might need to change the game graph in each iteration to reduce it to a parity
game. While the language of the computed APA is guarantee to shrink in every
iteration (due to line 8), this does not guarantee termination of Alg. 1 as such a
language still contains an infinite number of words. Due to the possibly repeated

4 Note that {(p)¥, = V from Def. 2(ii).



Strategy Templates 35

changes in the game graph for APA computation, the finiteness of the underlying
model can also not be used as a termination argument.

To address this problem, we provide a modified version of COMPUTERCS
[10, Sec.5] where the APAs computed by COMPUTEAPA in line 8 are over-
approximated by assumptions which are only implementable and permissive,
but not necessarily sufficient. This is done by restricting each assumption tem-
plate to its safety and co-live part which allows to encode the resulting addi-
tional restrictions for players directly as parity specifications over the original
game graph and thereby ensuring termination. Luckily, as assumptions are only
computed on each protagonist themselves, the resulting algorithm is still sound.
Moreover, this variant terminates in same time as that for solving parity games
(i.e., quasi-polynomial time) and still computes maximal RSCs [10]. However,
due to the over-approximation, this variant of COMPUTERCS might fail to com-
pute an RCS in every case where COMPUTERCS would have succeeded.

4.3 Cooperatively Contracted Specifications

Similar to the rationally contracted specifications, we can also compute cooper-
atively contracted specifications by utilizing APAs. Here, a player can rely on
other players to help. However, in order to give every player as much freedom as
possible in (locally) choosing their strategy, we want to reduce this help to the
necessary minimum. In the iterative algorithm for computing cooperatively con-
tracted specifications every player therefore computes how other players must
help her to make her own objective @, realizable. Such an assumption ¥-,, on all
other players P, can be computed by the procedure COMPUTEAPA (G, &,,,P-,).
In order to isolate the required help for each player, one needs to separate
the resulting templates into Player g-templates ¥_,|g, for each player ¢ # p.
With this, every Player p now gets new objectives from every other player
in P—p, that specifies the help player p needs to provide for others. Hence,
Wy — Nyzp¥-qle, is an additional objective for Player p, strengthening its
objective to ¢, «— ¥, A (¥, = Dp).

This, maybe surprisingly, shows that the computation of contracted strate-
gies for cooperating players is actually identical to their computation for ratio-
nal players (see line 5 in Alg. 1). The difference however, lies in the use of
CoMPUTEAPA to compute WI’,. More importantly, also the interpretation of
(¢p)per being a contracted specification changes for cooperating players. Here,
(b), i.e., satisfying ¥_,, = &, is now the easy part, as this follows directly from
V., being an APA on P, for &,. However, (a), i.e., ensuring to provide all
requested help to others, contained in ¥,, might result in unrealizability of &,,.
Then Player p must ask for more help from others, and hence, strengthen her
assumption on them. The resulting refinement of assumptions requires ¥-, to
be strengthened to COMPUTEAPA(G, ¢,,P-,) in future iterations.

Computation. Given the above intuition, we introduce the procedure
CoMPUTECCS(G) — which computes CCSs — by modifying the assumption com-
putation in line 8 of Alg. 1 to ¥, « /\tﬁfp CoMPUTEAPA(G, ¢, P-¢)| g, for all
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Algorithm 2. NEGOTIATE(G); adapted from [3, Alg.1]

Input: A P-player game G with game graph G = (V, E,vo) and parity specifications
(Pp)per.
Output: A cooperatively contracted specification (¢p)pep and templates (Ap)pes-
1: Wi, Cp, I, ¥, — COMPUTETEMP(G, ®p,p), Vp € P
2: if Apep(IIp AW-p) is conflict-free then
3: Wp<—/\q¢pw—‘q|Ep VpeP
p — Yp N (¥-p = D) VpEP
return (pp)per, (¥p A Ip)per
else
Dp — Pp ADO(Nyep Wi) AN OO-(U,pCp) , VP EP
return NEGOTIATE(G, &), D7)

p € P. While it can be proven that, whenever COMPUTECCS terminates, the
resulting specification profile (¢,),ep is indeed a CCS, it is in general not mawi-
mal. This is due to the fact that the separation of APAs into Player p templates
might make them lose their permissiveness, resulting in potentially non-maximal
CCSs. This phenomenon of lacking permissiveness is similar to the observation
discussed in Ex. 2, i.e. that winning strategy templates are not maximally per-
missive in zero-sum games. There we have seen that strategy templates exclude
strategies the protagonist can only use if the antagonist (unexpectedly) helps.
The same phenomenon occurs when splitting APAs: it is not always needed that
all players actually help — if one player decides to help, some obligations can be
lifted from other players, leading to cooperative strategies not contained in the
resulting CCS.

Interestingly, this over-approximation of assumptions by their restriction to
players is already enough to obtain a terminating version of CoMPUTECCS. In
contrast to the terminating version of COMPUTERCS, we do not need to further
restrict templates only to their safety and co-live parts. Due to the now coopera-
tive nature of the game, also live-group templates can be directly encoded as new
parity objectives over the same game graph. In particular, this implies that for
two-player games (addressed in [3]) which do not require the restriction of APAs
(as |P-p| =1 for all p € P = {1,2}), this terminating version of COMPUTERCS
(which is called NEGOTIATE in [3, Alg.1]) indeed computes mazimal CCSs.

The NEGOTIATE Algorithm for P-Player Games. In order to complete
the picture, Alg. 2 presents the formal extension of NEGOTIATE [3, Alg.1] to
P-player games, following the structure of COMPUTERCS for an easier expo-
sition in the scope of this paper. Here, the re-encoding of contracted strate-
gies into parity games is realized by an updated version of the procedure
ComMPUTEAPA (G, $,P,), called COMPUTETEMP(G, @, ¢), which computes the
winning region (P)@, the conflict region C that needs to be avoided eventually,
and a strategy template II, for Player ¢, along with the APA on players P—,.
With this, the realizability check of the specification profiles (@;)pep reduces to
checking if all assumption and strategy templates are conflict-free. If this is not
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the case, the new parity objective is obtained by adding the requirements to (i)
always stay in the winning region and (ii) eventually avoid the conflict region.
Due to the cooperative nature of the game, the algorithm terminates in poly-
nomial time. Furthermore, the use of localness of templates ensures that the
algorithm does not depend on the initial vertex, and hence, for every vertex v
for which there exists a cooperatively winning strategy profile, i.e., for every
v € (P) A\ ep @p the algorithm outputs a CCS even for the modified game graph
(V,E,v). This follows directly from the results in [3], and is formalized below.

Theorem 3. Given a P-player game G with game graph G = (V, E,vo) and par-
ity specifications (®,)pcp, the algorithm NEGOTIATE(G) terminates in O(P V%)
time and outputs a profile (p)pep that is CCS w.r.t. every game graph (V, E, v)
with v € (P) A\,cp Pp- If [P| =2, (p)per is also mazimal.

Ezxample 5. Consider the game graph in Fig.1 restricted to set of vertices
{c,d,e, f,g}, with specification @&y = O0{e} for Player 0 and &; = ¢0O{e, g}
for Player 1, and initial vertex c. Again, neither player can satisfy the spec-
ifications on their own. Then in Alg. 1 (to compute RCS), the APA com-
puted by Player 0 is ¥y = Ave({ec}), and that computed by Player 1 is
Uy = Aynsarn(€dr) A Acorve(€ec). In the next iteration, Player 1 can satisfy her
specification 1 := ¥ A (¥y = P1) by herself, but Player 0 can not satisfy
o := Py A (W1 = Pg). Moreover, the new APAs and specifications will remain
same in the next iterations, and hence, the algorithm will not terminate with a
CCS. In fact, for the rational setting, no CSS exists for this game.

However, in the cooperative setting, Player 0 computes the assumption
U1 = Auxsars(€dqr) A Auve({ege}) on Player 1, and strategy template Iy =
Avve({€ce }). Similarly, Player 1 computes Wy = Aconve(€ce, €cq) on Player 0, and
I = Aynsars(ear) A Acouve(€ec). Then since Wy A Iy and ¥y A I, are conflict
free, the negotiation terminates with these templates for Player 0 and Player 1
respectively. Intuitively, Player 0 brings the token to e from ¢, and Player 1
ensures that the token does not leave {e, g} infinitely often. Then due to ¥,
Player 1 also brings the token to e infinitely often. Hence, on cooperating, both
agents can satisfy their respective specification.

Remark 2. In principle, conflict free strategy templates II, can be extracted
for all players from a computed RCS or CCS (y¢,)pep by using Prop. 1 on
each ¢,. However, as already hinted at by the previous example, we show
that NEGOTIATE(G) can directly output conflict-free strategy templates without
additional computational overhead [3]. As contracted specifications (¢, )pep fully
decentralize a given multi-objective game G = (G, (@,),ep) into locally realizable
specifications ¢y, their respective winning strategy template II,, ensures that any
strategy 7, following I1, will result in a winning strategy profile (®,),cp for G.

5 Utilizing Templates Under Partial Observation

This section will not discuss the synthesis of strategy templates under par-
tial observation. Instead, we assume that the interaction between players is
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known during synthesis, but players have to actually play under partial obser-
vation which requires the extraction of a partial observation strategy from (full-
observation) strategy templates II,,.%. For simplicity, we use a partial observa-
tion setting where players cannot distinguish all vertices in the graph but still
take turns when playing. We use the well known knowledge-based abstraction
of games under partial observation (see e.g. [6]) to build an abstraction over
so-called knowledge states for each player, which collects all vertices of the game
that a player can currently not distinguish (given the past history of the play).
We then intersect all templates of vertices combined in these knowledge states.
If the resulting (knowledge-based) template is non-conflicting, a strategy can be
extracted in analogy to Theorem. 1.

The extraction of partial observation strategies from templates formalized
in this section has not been presented before. Its soundness, however, follows
directly from the known properties of knowledge-based abstractions and conflict
free templates and is therefore not explicitly proven.

5.1 Preliminaries

As every player might have different partial observation settings, the knowledge
abstraction is different for every player. Further, in order to build these abstrac-
tions in a sound manner, we need to make Player p choices along their moves
explicit by adding a label to Player p transitions in a game graphS.

p-Labelled Game Graphs. Let G = (V, E,vy) be a P-player game graph.
Then a corresponding p-labled game graph is a tuple G = (V,vg PX,PA) s.t.

e P is a finite alphabet with 1 € PX

o (u,Ll,v) e PAiff (u,v) € E-p, and

o (u,v) € E, iff there exists a unique L # o € PX s.t. (u,0,v) € PA.

Sightly abusing notation, we write PA(U, o) for some ) U C V and o € X' to
denote all states v € V s.t. (u,0,v) € PA for some u € U.

Vertex Covers and Partitions. Vertex subsets I" C 2V \ @ form a cover of
V. If for all v,+" € I" with v # 4’ holds that vy Ny = ), a cover is called a
partition. Covers induce a mapping I'" : V. — 20 st. v € I'M(v) iff v € . If
I is a partition, its holds that |[I'"(v)| = 1. Then we slightly abuse notation to
write I'T(v) = 4. We call covers and partitions player-respecting if for all v € I',
u,v € yand ¢ € P holds u € V, iff v € V.

Knowledge-Based Abstractions. Let ’G be a p-labelled game graph and PI”
a player-respecting’ partial observation partition which groups all states that

5 This complies with the concept of output-feedback control from engineering, where
control strategies are synthesized offline under full state information, but need to
operate based on measurements containing only partial state information.

6 Note that such labels are not needed in full observation settings, as discussed in
previous sections, as moves are then uniquely determined by the edge successors.

" By assuming PI” to be player-respecting, we assume that each player sees who is play-
ing. This retains the turn-based nature in the abstract game. Otherwise, concurrent
abstract games are obtained which are out of the scope of this paper.
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are indistinguishable for Player p. Then we define a knowledge-based abstraction
"G of PG under I in the usual way, by using the interaction structure between
players captured in ’G.

Definition 3. A knowledge-based abstraction abstract(’G,*I',p) of a p-
labelled game graph PG = (V,vo PX,PA) under the player-preserving partial obser-
vation partition PI" C 2V \ 0 is a tuple G = (pF,p%,pE,pA) s.t.

o 'T'C2V and for ally € T and u,v €7 holds that PI'" (v) = PI'M(u);
[ ] ‘DI’?O = ITTT(UO);
o (v,0,u) € PA iff there exists v € T s.t. U = PA(@,0) Ny # 0.

We observe that the state space PFof'Gisa player- and observation-preserving

cover of V with its induced abstraction map PP With this, we denote by ’r q the
set of knowledge-states 7 of Player p which are owned by player ¢, i.e., ¥ C V.

5.2 Extracting Partial Observation Strategies

In this section, we show how a Player p strategy template in a p-labelled game
graph PG can be abstracted into a Player p strategy template in Player p’s

knowledge abstraction *G. In order to formalize this abstraction, we need to
first extend strategy templates to labelled games.

Labelled Strategy Templates. Let PG be a p-labelled game graph. Then
the enabled state-action pairs for Player p in PG are collected in the set PA :=
{(v,0) € V, xPX' | ' € V. (v,0,v") € PA}. Then a p-labelled strategy template
is a tuple PIT < (PS,”D,PH) with PS C PA, PD C PA, and PH containing pairs of
form (R,PHy) for R C V and PH, C PA. We note that, due to the deterministic
definition of transition labels in ’G for Player p edges E, in G, every Player p
strategy template over G corresponds to a unique p-labelled strategy template
in PG.
Knowledge-Based Strategy Templates. Given a p—labelled game graph G
and a corresponding knowledge based abstraction 'G with state space I and
enabled state-action pairs A7 we extend the partition mapping "I induced
by "I to sets of state-action pairs @ C PA in the obvious way, i.e., pfﬂ(a) =
{(@,0) €A (v,0) € a, v € "TM(w)}.

With this, a p-labled btrategy template PIT in PG naturally corresponds to an
abstract strategy template "ITin "G

Definition 4. Given a p-labelled game graph PG, a corresponding knowledge-
based abstraction "G with state space T and a p-labelled strategy template PIT <
(PS,PD,PH) over PG, its corresponding knowledge-based strategy template T <
(pg,pf?,pﬁ) is defined by S = pfﬂ(pS), ’D = pfﬂ(pD), and "H = {(E,p}/f\g) |
(R,PH,) € PH} with R={7 € T | 7N R # 0} and "H, = {"T"(°H) | "H € "H,}.
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Given the above construction, one can use a computed strategy template 17,
in the original game graph to compute a p-labelled knowledge-based template 7]
which can be used to extract a Player p strategy "7, following "IT in "G via Thm.

1, if T is conflict-free in 'G. As knowledge-based abstractions ensure that every
history of a play corresponds to a unique Player p state, ’7, is a well-defined
observation-preserving strategy in *G.

If T is not conflict-free in p@, on can add these conflicts to the original
synthesis problem by updating the parity specifications in the iterative algo-
rithms of Sect.4 and resolve them by another iteration of the respective syn-
thesis algorithms before attempting a strategy extraction again. As this does
not require a change in the game graph, the resulting extension of the iterative
synthesis algorithms always terminates. It is however not complete, as synthe-
sizing an observation-based winning strategy profile might require to encode the
knowledge-based state structure into the negotiation algorithms.
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