
• Universal: provides controller for all plants
• Decisions are guided by prophecies,  

i.e., assumptions on the plant
• Avoids state explosion whenever possible

Universal Safety Controllers with Learned
Prophecies

Bernd Finkbeiner, Niklas Metzger, Satya Prakash Nayak, Anne-Kathrin Schmuck

Controller Synthesis

(behavioral goals specified in logic)

(model of the physical system, i.e., robots,
sensors, or environments)

Plant 𝙿

Spec φ

Product
𝒳
φ × 𝙿

Game solving

on 𝒳

Controller 𝙲

No solution

✅

❌

• Controller tied to a single plant
• Size of plant dominates the approach
• Full state-space exploration of the plant

• No generalization
• No scalability
• No explainability

Universal Safety Controllers

Spec φ

Plant 𝙿

Universal Controller

with prophecies about  

the plant

𝒰 Verify prophecies
against actual plant

to construct solution

Controller 𝙲

No solution

✅

❌

• Strong generalization
• More scalable
• More explainable

From Complex Tree Automata to Simple CTL Formulas

• Prophecy construction via tree automata

• Hard to verify

• Too complex to understand

Existing Method (Unicon)[1] Our Method (UCLearn)

• Generalizes to similar plants
• Highly scalable
• Explainability

Spec φ

Plant 𝙿

Nominal
plants

Initialize controller with 
trivial prophecies Refine

+ve samples

-ve samples

controller with  
learned CTL prophecies

Verify prophecies
against actual plant Controller 𝙲

✅❌

Advantages

A Load Balancer Example Experimental Results

The controller assigns tasks to 2 CPUs that can be busy, free, or overloaded

[1] Finkbeiner et al. Synthesis of universal safety controller, TACAS 2025 
[2] Bordais et al. Learning branching-time properties in CTL and ATL via constraint
solving, FM 2024

[3] van Dijk. Oink: An Implementation and Evaluation of Modern Parity Game Solvers,
TACAS 2018.

Spec: assign each task to a CPU without being overloaded 

One nominal plant
each of the processors is busy for exactly one

time-step once assigned a task

φ = □ (task → ◯(asgn1 ∨ asgn2)) ∧ □ ¬overload

Controller with 
learned CTL prophecies

• Learned from a single nominal plant with parameter 2
• Small and concise CTL formulas (with size at most 4)
• Up to 40x faster than existing methods

• Prophecy approximation via CTL learning[1]

• Refinement via parity game solving[3]

• Polynomial-time verification
• Human-readable CTL formulas

