
• Universal: provides controller for all plants
• Decisions are guided by prophecies,  

i.e., assumptions on the plant 
• Avoids state explosion whenever possible
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✅
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• Controller tied to a single plant
• Size of plant dominates the approach
• Full state-space exploration of the plant

• No generalization 
• No scalability 
• No explainability

Universal Safety Controllers

Spec φ

Plant 𝙿

Universal Controller 

with prophecies about  

the plant 

𝒰 Verify prophecies  
against actual plant

to construct solution

Controller 𝙲

No solution

✅
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• Strong generalization 
• More scalable 
• More explainable

From Complex Tree Automata to Simple CTL Formulas

• Prophecy construction via tree automata

• Hard to verify

• Too complex to understand 

Existing Method (Unicon)[1] Our Method (UCLearn)

• Generalizes to similar plants
• Highly scalable
• Explainability
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controller with  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Advantages

A Load Balancer Example Experimental Results

The controller assigns tasks to 2 CPUs that can be busy, free, or overloaded
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Spec: assign each task to a CPU without being overloaded 
 

One nominal plant
each of the processors is busy for exactly one 

time-step once assigned a task

φ = □ (task → ◯(asgn1 ∨ asgn2)) ∧ □ ¬overload

Controller with 
learned CTL prophecies

• Learned from a single nominal plant with parameter 2
• Small and concise CTL formulas (with size at most 4) 
• Up to 40x faster than existing methods

• Prophecy approximation via CTL learning[1]

• Refinement via parity game solving[3]

• Polynomial-time verification 
• Human-readable CTL formulas


