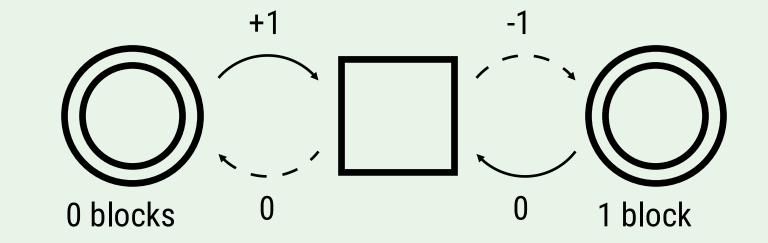
Fair Quantitative Games

Ashwani Anand, Satya Prakash Nayak, Ritam Raha, Irmak Sağlam, and Anne-Kathrin Schmuck

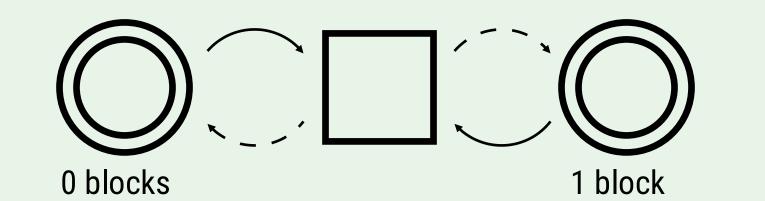
Fairness in Synthesis

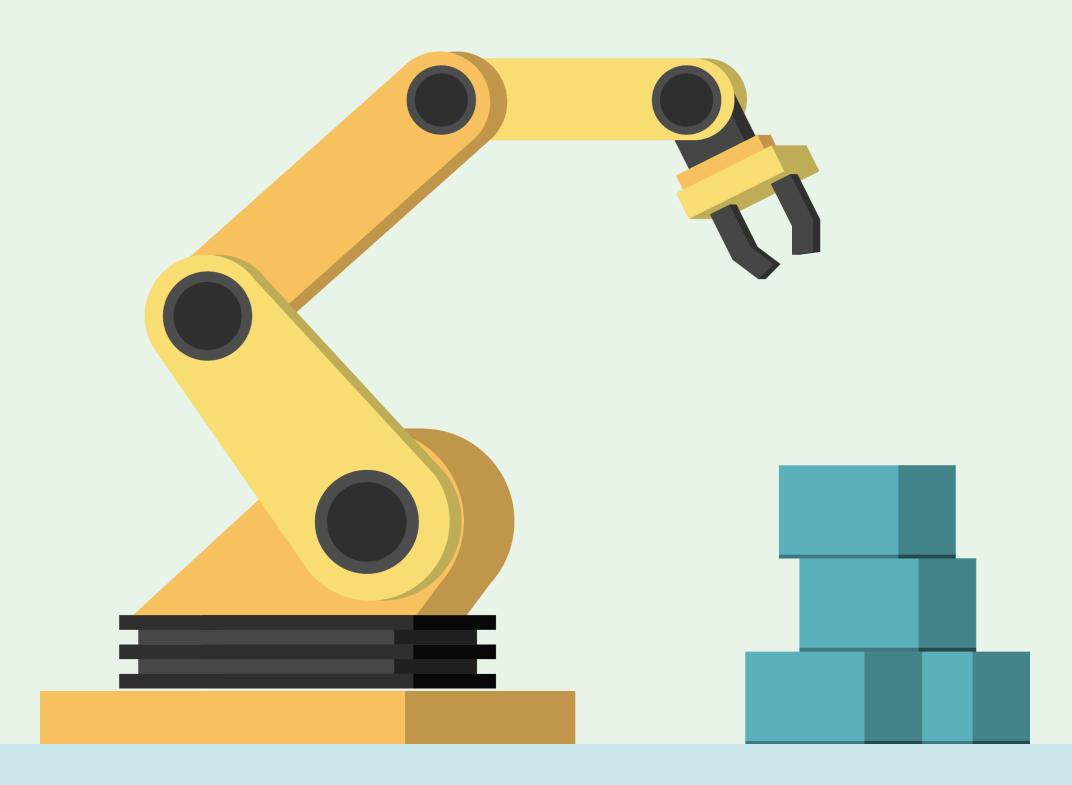


System (Player 1) Environment (Player 2)

Fairness assumptions eliminate unrealistic scenarios.

Fairness: Whenever the source node of a dashed edge is taken infinitely often, the dashed edge is also taken infinitely often.





Can we guarantee the robot will put a block at the mark, and remove it, infinitely often?

> Qualitative Safety, Parity, Rabin...

Fairness is easy on qualitative games

Can be solved in **same time complexity** as the original game [1, 2]

Can we guarantee the robot will put a block at the mark, and remove it, infinitely often, without the battery running out, for some initial value of the battery?

> Quantitative Energy, Mean-payoff

What about fairness on quantitative games?

Fairness on system can be solved in super-exponential time using current approaches, whereas there is no known approach for fairness on environment.

Contributions

	Determined?	Complexity (Pseudopolynomial)	Reduction
1-fair MP	Yes	$O(n^3 m W)$	To MP on 6n nodes and max absolute weight

Fairness in Quantitative Games

A play ρ is **fair** iff for every node $v \in inf(\rho)$ that has fair (dashed) outgoing edges $E^{f}(v) \neq \emptyset$, $E^{f}(v) \subseteq inf(\rho)$.

2-fair MP	Yes	0(n ³ mW)	To MP on 6n nodes and max absolute weight
1-fair Energy	Yes	$O(n^4mW)$	To Energy on 8n nodes and max absolute weight
2-fair Energy	No	0(n ³ mW)	Player 1 winning region reduces to that of an energy on the same graph, Player 2 winning region reduces to that of 2-fair MP game on the same graph

Gadgets for Reducing Fair Games to Standard games

For each fair node v in the 1-fair MP game

replace v with the following v-gadget

1-Fair Games: Player 1 nodes have fair outgoing edges. **2-Fair Games:** Player 2 nodes have fair outgoing edges.

1-Fair Mean Payoff

Does there exist a strategy σ such that, <u>long run average payoff</u> of every σ -play is non-negative AND the play is fair?

1-Fair Energy

Does there exist an initial credit **c** and a strategy σ such that, <u>total energy level</u> along every σ -play stays **non-negative AND the play** is fair?

2-Fair Mean Payoff

Does there exist a strategy σ such that, <u>long run average payoff</u> of every σ -play is non-negative OR the play is NOT fair?

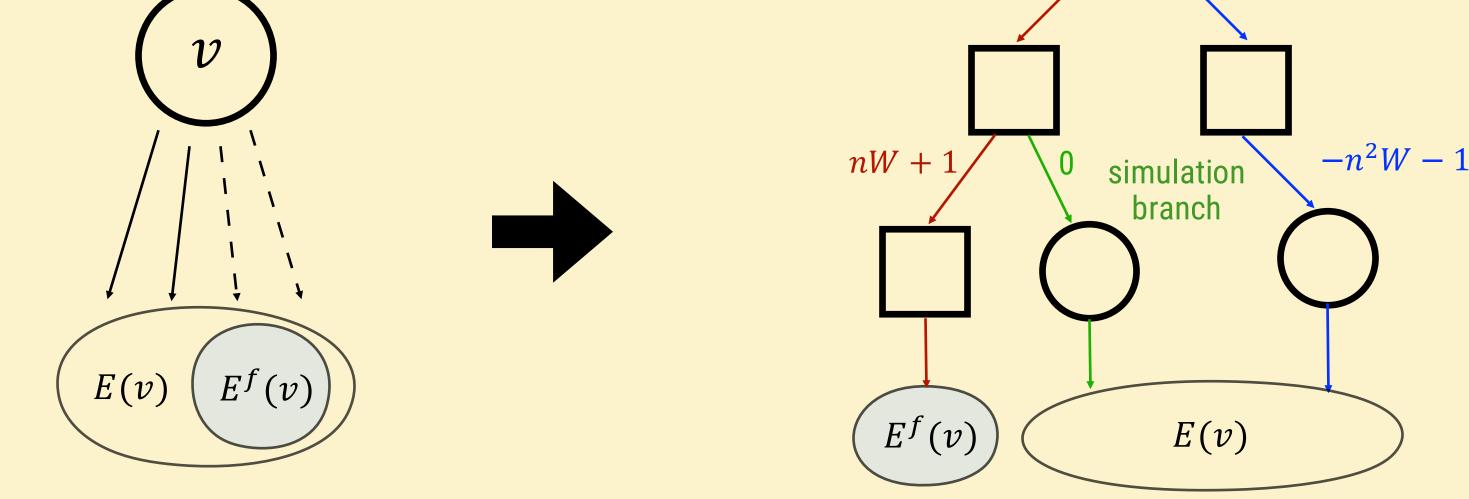
2-Fair Energy

Does there exist an initial credit **c** and a strategy σ such that, <u>total energy level</u> along a play stays non-negative OR the play is NOT fair?

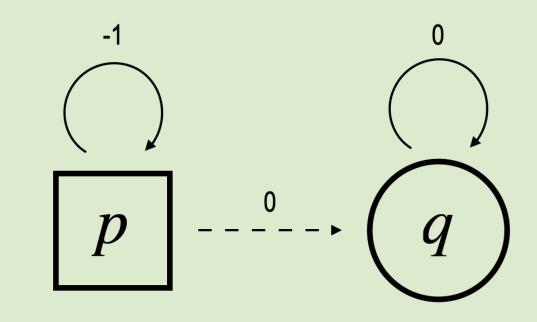
2-fair energy games are not

fairness-forced escape branch for Player 2 (the fair branch)

escape branch for Player 1 (the escape branch)



determined



A node is won by Player 1 if there exists a Player 1 strategy σ and a credit *c* s.t. every σ – play is won by Player 1 for credit *c*.

A node is won by Player 2 if there exists a Player 2 strategy π s.t. every π – play's total payoff goes below – cfor every credit *c*.

[1] Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A., Soudjani, S.: Fast symbolic algorithms for omega-regular games under strong transition fairness. TACAS'22 [2] Hausmann, D., Piterman, N., Saglam, I., Schmuck, A.: Fair ømega-regular games. FoSSaCS'24

