
Adaptive Strategies for rLTL Games
Satya Prakash Nayak 1 Daniel Neider 2 Martin Zimmermann 3

1Chennai Mathematical Institute 2Max Planck Institute for Software Systems 3University of Liverpool

Goal

We consider the problem of synthesizing most robust controllers using the Abstraction-Based Controller Design (ABCD) [1].

To preserve robustness, we consider the specifications for the controllers to be expressed in Robust Linear Temporal Logic (rLTL) [2], which allows the reasoning about how robust the specification is.

ABCD assumes the environment to always act antagonistically, which is often a non-realistic assumption. So is there a way of satisfying the specification ”better” if

the environment is not antagonistic?

Suppose we want to satisfy some property p; and assuming the environment to be antagonistic, the best we can achieve is to satisfy p at finitely many positions of a

word. We would like the controller to satisfy p at infinitely many positions (or even better) if possible when the environment is not antagonistic.

rLTL Specification

Continuous
Dynamic System

Finite System

rLTL Game
Adaptive
Strategies

Robust Controller
for Original System

Abstraction

Synthesis Refinement

Robust Linear Temporal Logic

The difference between “minor” and “major” violations of a formula cannot be distinguished in a

2-valued semantics.

Consider the formula ϕ = p, which demands that p holds at all positions of a word. Clearly, ϕ is

violated even if p does not hold at only a single position, which is a very minor violation.

To distinguish various degrees of violations, rLTL adopts a 5-valued semantics.

For the formula p, the robust version is written as p, then, the five truth values distinguish the

various degree of violations as shown in the figure on the right. Let b p denotes the truth value

for the top case in the figure, b p denotes truth value for the next case and so on.

With this intuition, we can define a preference on truth values as follows:

b p > b p > b p > b p > b ¬p.

Robust LTL Games

0
{p}

1
{q}

4
{q}

5
{p, q}

2
{p}

3
{q}

: Player E (Environment)

: Player C (Controller)

rLTL Specification ϕ = p

The value of a play is the value of the rLTL formula ϕ on the word induced by labels of the play. For example, the value of the play 012323 . . . is the value of

the formula p on the word {p}{q}{p}{q} . . .

Player C ’s objective is to maximize the value while Player E’s wants is to minimize it.

From play prefix 01, the controller strategy {0 → 1; 4 → 1; 3 → 2} enforces the play to visit 0 or 2 infinitely often, hence enforces the value b p.

As we have seen above, the classical synthesis algorithm is based on an overly pessimistic assumption on the environment, so we introduce two kinds of

adaptive strategies.

References

[1] Belta et al., 2017, Formal methods for discrete-time dynamical systems, Vol. 15, Springer.

[2] Tabuada and Neider, 2016, Robust Linear Temporal Logic, CSL.LIPIcs, Vol. 62, pp. 10:1–10:21.

Weakly Adaptive Strategy

Weakly adaptive strategy is a strategy that adapts its moves to ensure the optimality even when the environment has made a bad move (by ”bad”, we mean

the moves which are not optimal).

Formally, a controller strategy σ is weakly adaptive if no strategy enforces a better value than σ from any play prefix.

In the example on the bottom left, the best possible scenario for Player C assuming Player E plays his best moves is to enforce a play where p holds at

infinitely many positions

A classical strategy for Player C is {0 → 1; 3 → 2; 4 → 1} which enforces the play to visit the vertex 2 infinitely often.

However, if Player E makes a bad move of 1 → 4, then Player C can force the play to eventually just stay at the vertex 5, and hence, p holds eventually always.

Therefore, a weakly adaptive strategy for Player C is {0 → 1; 3 → 2; 4 → 1} which enforces a play where p holds eventually always if the token ever reaches

the vertex 4; otherwise, enforces a play where p holds at infinitely many positions.

Strongly Adaptive Strategy

Strongly adaptive strategy is a weakly adaptive strategy that also maximizes the opportunities of the environment making bad moves.

For the example on the bottom left, another weakly adaptive strategy for Player C is {0 → 2; 3 → 2; 4 → 1}. However, then the token can never reach the

vertex 4 and hence, there cannot be a play where p holds eventually always.

Hence, {0 → 1; 3 → 2; 4 → 1} is a better one and such a strategy is strongly adaptive.

0
{q}

1
{q}

2
{p}

3
{q}

4
{p}

Now for the above game, if Player E plays his best moves, then the best possible play Player C can enforce is the one where p holds at infinitely many

positions (e.g., a play with suffix 03434 . . .).

Unless Player E makes a bad move by moving along 1 → 2, any weakly adaptive strategy for Player C will eventually make him move the token to 3.
But if Player C moves along 0 → 1, then there is a chance of Player E making a bad move of 1 → 2, and hence the token stays at the vertex 2, inducing a play
where p holds eventually always.

So, if σk is a strategy for Player C , which makes him move along 0 → 1 the first k times it reaches 0 and then moves to 3; then σk+1 is always a better

strategy than σk . Hence, no strongly adaptive strategy exists.

Theoretical Results

Weakly adaptive strategy always exists for a game, whereas strongly adaptive strategy may not exist for some cases.

It can be shown that both the strategies can be computed (if exists) in doubly-exponential time, and hence are not harder than the classical synthesis problems.

satyaprakash@cmi.ac.in neider@mpi-sws.org Martin.Zimmermann@liverpool.ac.uk


